Computation Tree and Strong Spatial Mixing in Multi-spin Systems
نویسندگان
چکیده
This paper deals with the construction of a computation tree (hypertree) for interacting systems modeled using graphs (hypergraphs) that preserve the marginal probability of any vertex of interest. Local message passing equations have been used for some time to approximate the marginal probabilities in graphs but it is known that these equations are incorrect for graphs with loops. In this paper we construct, for any finite graph and a fixed vertex, a finite computation tree with appropriately defined boundary conditions so that the marginal probability on the tree at the vertex matches that on the graph. For several interacting systems, we show using our approach that if there is strong spatial mixing on an infinite regular tree, then one has strong spatial mixing for any given graph with maximum degree bounded by that of the regular tree. Thus we identify the regular tree as the worst case graph for the notion of strong spatial mixing.
منابع مشابه
The Correlation Decay (cd) Tree and Strong Spatial Mixing in Multi-spin Systems
This paper deals with the construction of a correlation decay tree (hypertree) for interacting systems modeled using graphs (hypergraphs) that can be used to compute the marginal probability of any vertex of interest. Local message passing equations have been used for some time to approximate the marginal probabilities in graphs but it is known that these equations are incorrect for graphs with...
متن کاملStrong Spatial Mixing and Approximating Partition Functions of Two-State Spin Systems without Hard Constrains
We prove Gibbs distribution of two-state spin systems(also known as binary Markov random fields) without hard constrains on a tree exhibits strong spatial mixing(also known as strong correlation decay), under the assumption that, for arbitrary ‘external field’, the absolute value of ‘inverse temperature’ is small, or the ‘external field’ is uniformly large or small. The first condition on ‘inve...
متن کاملCounting Independent Sets in Hypergraphs when Strong Spatial Mixing Fails
Approximate counting via correlation decay is the core algorithmic technique used in the sharp delineation of the computational phase transition that arises in the approximation of the partition function of anti-ferromagnetic two-spin models. Previous analyses of correlation-decay algorithms implicitly depended on the occurrence of strong spatial mixing. This, roughly, means that one uses worst...
متن کاملApproximation algorithms for two-state anti-ferromagnetic spin systems on bounded degree graphs
In a seminal paper [10], Weitz gave a deterministic fully polynomial approximation scheme for counting exponentially weighted independent sets (which is the same as approximating the partition function of the hard-core model from statistical physics) in graphs of degree at most d, up to the critical activity for the uniqueness of the Gibbs measure on the infinite d-regular tree. More recently S...
متن کاملApproximation via Correlation Decay When Strong Spatial Mixing Fails
Approximate counting via correlation decay is the core algorithmic technique used in the sharp delineation of the computational phase transition that arises in the approximation of the partition function of anti-ferromagnetic two-spin models. Previous analyses of correlation-decay algorithms implicitly depended on the occurrence of strong spatial mixing. This, roughly, means that one uses worst...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007